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Abstract
The problem of deriving the particle size distribution directly from
superparamagnetic magnetization curves is studied by three mathematical
methods: (1) least-squares deviation with regularization procedure, (2)
simulated annealing and (3) genetic algorithm. Software has been developed
for the latest versions of all these methods and its performance compared
for various models of underlying particle size distributions (Dirac δ-like,
lognormal- and Gaussian-shaped). For single peak distributions all three
methods give reasonable and similar results, but for bimodal distributions
the genetic algorithm is the only acceptable one. The genetic algorithm is
able to recover with the same precision both the lognormal and Gaussian
single and double (mixed) model distributions. The sensitivity of the genetic
algorithm—the most promising method—to uncertainty of measurements was
also tested; correct peak position and its half width were recovered for Gaussian
distributions, when the analysed data were contaminated with noise of up to
5% of MS .

PACS numbers: 02.60.Pn, 02.70.−c, 75.20.−g, 75.50.Tt

1. Introduction

Modern demands have rendered magnetic nanoparticles increasingly important. Non-
interacting nanoparticles are used in ferrofluids, high frequency inductive elements, hard disk
recording media and biomedical applications. Interacting assemblies of nano-scale magnetic
grains make up permanent magnets and nanocrystalline soft magnetic materials. In many cases
the interaction between magnetic particles can be overcome by increasing the temperature
well above the superparamagnetic transition temperature, Tsp, where the magnetization curves
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collapse to a single curve that is the superposition of Langevin functions. The shape of this
curve depends only on the distribution of particle sizes and hence it can be used as a magnetic
or ‘Langevin granulometer’ to determine this distribution. Although several other techniques
are available for the determination of particle size distributions, such as transmission electron
microscopy, small angle neutron scattering, etc, the magnetic method is easier to perform
experimentally. Of course, this technique presents the same difficulty as many other problems
in data evaluation, namely the physical system uniquely determines the measured data but the
inverse problem of deriving the parameters of the physical system from the data is ambiguous.
In this paper we study this ambiguity, applying three different algorithms in order to derive the
particle size distribution from the superparamagnetic magnetization curves. As far as we know
such a comparison has not been done before. The following optimization techniques were
adapted for this problem and compared: (1) regularization method, (2) simulated annealing
and (3) genetic algorithm.

2. Statement of the problem

Let us consider a ferrofluid or a nanocomposite in the superparamagnetic state. The
magnetization curve of a single superparamagnetic particle is described by the Langevin
function, reflecting the competition between the thermal and Zeeman energy terms:

mi = µi Lang

(
µ0µiH

kBT

)
i = 1, . . . , N (1)

(the Langevin function Lang(x) = coth(x) − 1/x), where N is the number of different types
of particles, µi is the magnetization of a particle of type i, H is the magnetic field strength,
µ0 is the permeability of the vacuum, T is the absolute temperature and kB is the Boltzmann
constant. The particles are assumed to be single domain. The magnetization of a sample that
contains a distribution of particle types is given by

M(H, T ) =
N∑

i=1

wiµi Lang

(
µ0µiH

kBT

)
(2)

where wi = wi(µi) is the number of particles of type i, per unit volume, each carrying a
magnetic moment equal to µi .

The task is to determine the distribution of the magnetic moment, wi(µi)—directly related
to the particle size—from the experimental magnetization curve, M(H, T ).

The fitting procedure can be initiated without assuming anything about the shape of
wi(µi), when using the regularization method. Alternatively, one can assume the particular
shape of the searched distribution, parametrize it and then gradually improve the values of
unknown parameters, initially estimated only very roughly or even just guessed, by—for
example—simulated annealing (SA) or genetic algorithm (GA) method.

Each fitting procedure begins with determining the magnetic moment of the largest
particles. Such an estimate can be obtained from the initial slope of the magnetization curve:

µmax = 3kBT

µBMS

· ∂M

∂H

∣∣∣∣
H→0

. (3)

When defining the interval of the possible magnetic moments, the above value should be
multiplied by a factor of 2 to 4, to make sure that even the largest particles are indeed
presented in the sought distribution. This is because the largest particle predominantly, but not
exclusively, determines the initial slope and therefore equation (3) underestimates the value of
µmax. The interval [0, 4µmax] is then divided into N bins of equal width, i.e. �µ = 4µmax/N,

and µi = i · �µ, i = 1, . . . , N .
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3. Description of the algorithms

3.1. Regularization method

This method is based on minimizing the sum of the squared deviations, defined as

σ =
L∑

m=1

[
Mwi

µi
(Hm) − Mm

]2
(4)

where Mwi
µi

(Hm) is the calculated and Mm is the experimental magnetization (m = 1, . . . , L

being the numbers of experimental points). The necessary condition for extremum

∂σ

∂wj

=
L∑

m=1

2

[
N∑

i=1

wiµi Lang

(
µ0µiHm

kBT

)
− Mm

]
Lang

(
µ0µjHm

kBT

)
= 0 (5)

j = 1, . . . , N , leads to a system of N linear equations for the unknowns wi . Straightforward
solution of this equation system leads to unacceptable values of wi , with large negative and
positive fluctuations in response to small variations of Mm (m = 1, . . . , L). Such a solution
has no physical meaning and an additional constraint is necessary to stabilize the solutions.
The method of Weser and Stierstadt [1] based on Tikhonov regularization [2] is adapted here.
A ‘regularization term’ is added to the sum of the squared deviations, σ , and the modified
sum of the squared deviations is minimized. The regularizing operator used by Weser and
Stierstadt is

ρ =
N∑

i=1

w2
i (6)

and the expression σ ′ = σ + αρ is minimized, where α > 0 is the regularizing parameter.
By requiring a small value of ρ, the unwanted oscillations of wi are suppressed, while the
modified system of equations becomes

∂σ ′

∂wj

=
L∑

m=1

[
N∑

i=1

wiµi Lang

(
µ0µiHm

kBT

)
− Mm

]
Lang

(
µ0µjHm

kBT

)
+ αwj = 0

j = 1, . . . , N. (7)

The random oscillations of wi can also be limited by requiring small values of the first and
second derivatives of the sum of the squared deviations, as suggested in [3]. The expression
to minimize is σ ′ = σ + αp + βq + γ r , where

p =
N∑

i=1

w2
i q =

N−1∑
i=1

(wi+1 − wi)
2 r =

N−2∑
i=1

(wi+2 − 2wi+1 + wi)
2 (8)

and α, β and γ are regularizing parameters. The choice of these parameters is rather arbitrary
as long as the σ ′ < 2σ condition is satisfied and the best choice depends on the quality of
the measured data, the shape of the particle size distribution, etc. Reasonable results were
obtained by using terms with p and r only [3].

The α = β = γ = 0 assumption takes us back to the ill-posed problem. For small values
of the regularization parameters, one can obtain a precise representation of the magnetization
curve, but the probability distribution is unphysical, whereas larger values of α, β and γ make
the distribution smooth at the cost of increasing σ ′, i.e. the quality of the fit becomes worse.
A reasonable compromise has to be found between these two extremes. The probability
distribution is obtained by solving the set of linear equations provided by the minimizing
process.
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3.2. Simulated annealing method

As far as we know, the simulated annealing method has never been applied to Langevin
granulometry. In principle, this is a Metropolis Monte Carlo algorithm, proposed by
Metropolis and co-workers in 1953 [4] and modified by Kirkpatrick and co-workers in 1983
[5]. According to the principle of the method, the evolution of the distribution function,
wi , is imitated by the evolution of a thermodynamic system. The transition from the
initial state with energy E1 to another state with energy E2 is governed by a probability
p = exp[−(E2 − E1)/kBT ], where T is a controlling parameter and kB is the Boltzmann
constant. The system goes to state E2 with the probability p if E1 � E2 and with probability
1 when E2 < E1.

The algorithm starts from an initial distribution assumed to be the uniform distribution
in our calculation, i.e. wi = 1/N at the start of the algorithm. The object of interest is the
distribution function wi (µi). For this wi(µi) we calculate the sum of absolute deviations,
F ini , with the following relation:

F =
L∑

m=1

∣∣Mwi

µi
(Hm) − Mm

∣∣. (9)

Then, from the set of wi(µi) we randomly choose one bin and with a probability of 1/2 we
either increase or decrease the initial value by a preset fixed number (the smallest step in the
w coordinate of the histogram). After this we calculate the sum of absolute deviations, Fnext

and then �F = Fnext − F ini . The new distribution is always accepted, if �F < 0. The new
distribution can also be accepted when �F > 0, if only exp(−�F/T ) > q, where q is a
random number between 0 and 1, and T is the ‘annealing’ parameter. For a given T, we make
1000–2000 Monte Carlo steps, then we decrease T by a factor of 0.98 and the procedure is
repeated. Gradually decreasing T ensures that the algorithm converges to a stable solution.
For the kernel of our program the subroutine given in [6] was used.

3.3. Genetic algorithm

Genetic algorithms (GAs) have recently been devised in the field of artificial intelligence
and have been used for optimization problems. According to Gallagher, this algorithm is far
superior in performance to Monte Carlo techniques [7]. The method was pioneered by John
Holland in the early sixties [8]. The progress of the field was summarized by Grefenstette [9]
and Goldberg [10]. Starting with the mid-eighties, genetic algorithms have received increased
attention from problem-solving practitioners in numerous areas of applied sciences. For
treating the problem of Langevin granulometry, this algorithm was first applied by Gutowski
[11].

The genetic algorithm operates indirectly on the population of trial solutions to the
given optimization problem. Every solution, called a phenotype, is represented by a string
of symbols, usually of fixed length, called a chromosome, a genotype or just an individual.
Chromosomes and pairs of chromosomes are the only objects which are explicitly manipulated
by the algorithm. Therefore the genotypes should be thought of as the coded prescriptions
for the trial solutions, not being the solutions per se. The coding of chromosomes is such
that any given genotype determines uniquely the phenotype, which can be derived from it. A
chromosome is an ordered sequence of smaller parts, assumed indivisible, and called genes.
Usually, but not always, a single gene corresponds to a single unknown. The chromosomes may
exchange their genetic material by means of the crossover operation: the two individuals (called
the parents) exchange parts of their genetic material (substrings of symbols), thus creating
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offspring—new members of the population. Each single individual can also be subjected
to mutation—the operation of random change of one or more of its genes (single-character
substrings). The evolution of the population—the search for optimal solution—progresses
as a sequence of crossover and mutation operations, applied repeatedly. It is essential to
devise a means to evaluate every member of the population in order to decide which one is
better and which one is worse. The quality of an individual is called fitness. According to
the Darwinian law of survival of the fittest, the better fitted individuals have higher chances
to mate with others and thus to transfer their genetic material to the next generations. The
detailed mechanism of simulated evolution, at the lowest level, involves the following basic
steps:

genotype
decoding−→ phenotype

evaluation−→ fitness
selection−→ probability to become a parent

The probability of mutation is kept low, since a high rate of mutation would turn the GA
into an ordinary Monte Carlo procedure. At the highest level, the evolutionary process can
be described as presented in algorithm 1. The algorithm is fairly insensitive to the particular
choice of tuning parameters, thus their definitions and meaning will be given in the following
text.

Algorithm 1 Genetic algorithm with fixed-size population and asexual reproduction

Require: environmental data (the function being optimized); few tuning parameters
Ensure: the set of near-optimal points in the search space

1: create old population
2: create empty new population
3: evaluate all members of old population
4: while termination criteria not met do
5: repeat
6: select two individuals as prospective parents
7: if mating successful then
8: perform crossover
9: end if

10: try to mutate both chromosomes, crossed or not
11: put both individuals into new population
12: until new population is formed
13: evaluate members of the new population
14: replace old population with newly created one
15: end while

The low level mechanisms, except selection, are specific to the particular problem, while
the general machinery (algorithm 1) is always the same. In the next section, the essential steps
of GA are described as implemented in our problem.

3.3.1. Genotype coding. This coding is performed in a natural way: each chromosome
consists of genes corresponding to the contents of histogram bins approximating the sought
momentum distribution. Every gene is a positive integer number with the allowed number of
bits (in binary counting system) being fixed, but not necessarily the same for every gene. To
make sure that those numbers are always non-negative, we limit the number of bits assigned
to every gene to 30, which is appropriate for 32-bit computers.
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3.3.2. The transformation of genotypes into phenotypes. This corresponds to a smoothing
tool, which produces smooth histograms from ‘raw’ genotypes, as proper candidates for
solutions. The smoothing is done by convolution of the original, ‘noisy’ genotype with an
appropriate chosen point-spread function f (x), namely

f (x) =
{

exp
( −1

1−(||x||/λ)2

)
for ||x|| < λ

0 otherwise.
(10)

Here x is the distance between genes, i.e. the difference between the sequential numbers of
histogram bins, and the value of the smoothing parameter, λ > 0, is chosen depending on the
quality of experimental data. The double bar, || · ||, instead of just an absolute value, | · |, is
used here in order to indicate how smoothing is applied to multidimensional cases. After the
convolution is executed, our phenotype becomes an ordered sequence of real numbers.

3.3.3. Evaluation of phenotypes. It takes two steps. In the first step, the phenotype is used as
is to simulate the experimental data, following equation (2), with the ith gene playing the role
of the unknown wi . This produces the simulated magnetization curve, which is usually rather
far from the collected experimental data. Fortunately one can scale all unknowns to satisfy
(see equation (2))

lim
H→∞

M(H, T ) =
N∑

i=1

wiµi = Ms (11)

where Ms , the saturation magnetization, has to be estimated independently and only once.
There is no need to recalculate the already simulated curve; it is sufficient to multiply it by the
same scale factor. The second step is the calculation of the fitness according to formula (9).

3.3.4. Selection rules. The value of the fitness is a non-negative real number with
unpredictable magnitude. A lower value indicates a better fit. To transform the fitness,
F, of any given individual into probability, p, of being selected as a parent the formula

p(F) = 1

1 + exp
(

F−KF

SF

) (12)

is used, with F given by equation (9). KF is the median of the population fitness and SF is,
in our implementation, the standard deviation from the median of the population fitness. The
positive scaling factor SF may be chosen somewhat arbitrarily. Its precise value is not very
important, but making it close to zero has the effect of ‘hardening’ the selection, i.e. individuals
with fitness below the median are granted only negligible chances for reproduction, while those
above the median will almost certainly become parents. On the other hand, increasing SF

results in forces p(F) → 1
2 for all members of the population, regardless of their individual

fitness.

3.3.5. The initial population. It is created in an unbiased way. All researchers in the field
agree that the initial population should be as random as possible. We build it bit by bit, except
for chromosome number 1, which is set by the calling program and left unchanged at this
stage. Each bit’s value is set to either 0 or 1 with 50% probability. This is very important
indeed, since a particular bit has the same value for every individual in the population, then
50% of search space will never be explored by the algorithm, unless a mutation changes
this bit. Insufficient diversity of the population may be one of the reasons for the so-called



Langevin granulometry 6033

premature convergence, when the algorithm becomes stuck in a certain region of the search
space, not containing any extremal fitness at all.

There is also a question of how numerous should the evolving population be. For efficiency
reasons, we would rather prefer a smaller population over a larger one. The lower bound for
membership can be obtained in at least two ways [12]. Let n denote the number of individuals
in the population and Nb the length of an individual chromosome, expressed in bits. Then
either

• n � log2 Nb − log2 p, where p is the required probability that no bit is ‘lost’, after the
construction of the initial population, or

• n �
√

2Nb.

Both numbers should be rounded up to at least the nearest even integer and the higher one
should be used as the lower bound for the membership. The second number, usually higher,
only says that it is impossible to explore the entire search space, using crossover operations
exclusively, with a smaller number of individuals in the population. This is a necessary
condition that may not be sufficient. In our case, with 256 unknowns, each being a 30-bit
number (chromosome length is then 7680 bits), we need at least 124 individuals to reach the
goal. We decided to establish a population of 256 members. This may seem in sharp contrast
with many other papers on GAs, where larger populations are common, reaching sometimes up
to 8192 members for problems involving only a few tens of unknowns. We never intentionally
clone our chromosomes and therefore we do not see any reason to increase the size of the
population significantly above the lower bound. This is not a very critical problem since a
larger population may need fewer generations to reach the terminating criteria, leaving the
total computational complexity, measured by the number of fitness evaluations, practically
unaffected.

3.3.6. Parents and offspring. Whether any given chromosome can become a parent is decided
by comparing a uniformly distributed random number on [0, 1] with the quantity p derived
from an individual’s fitness by equation (12). The second parent is selected the same way
from the remaining candidates.

The probability of having offspring is one of the control parameters of GAs. Its value is
usually chosen from between 20% and 95%, with no clear influence on the efficiency of the
optimization procedure.

In our implementation this overall tuning parameter is set to 75%. To achieve this value
in the statistical sense, the switching probability per bit is derived in the following way. The
overall crossover attempt is divided into manipulations on corresponding genes, one from
each parent. They are copied into the genetic material of two offspring straight or switched
depending on a probability derived from the tuning. The switching occurs with a probability
which can be derived from the value of our tuning parameter and the length of the gene. Since
the genes may differ in length, it is convenient to precompute the switching probabilities at
the beginning of the routine.

The above crossover operation returns a pair of unchanged chromosomes, a pair crossed
at exactly one point, two points, etc. In a certain run we have obtained 408 pairs unchanged,
527 pairs crossed once, 411 at two points, 198 at three points, 65 at four points and 19 crossed
at five or more points. As we can see, the fraction of ‘childless couples’ was 25.06%
corresponding to the chosen 75% for the overall tuning parameter almost exactly.

3.3.7. Mutations. These are relatively rare events, in which a given gene is changed
arbitrarily. The prevailing opinion is that mutation should be applied very carefully, since
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the majority of them are useless and they only waste computer resources. Yet there is another
opinion saying that in reality mutations occur quite frequently, but remain unnoticed due to
their small effect. Our mutation mechanism follows the second way of thinking.

There are two common sense limits for the mutation rate. The lower limit requires that at
least one individual, on average, is mutated during one generation. Mutations are necessary to
preserve the diversity of the population. They may also be considered as a kind of ‘teleportation
vehicle’ for populations initially located very far from the optimum. The upper limit requires
that no more than half of individuals can be mutated, otherwise the GA practically becomes a
generic Monte Carlo routine.

Our implementation of mutation is such that statistically the number of mutated individuals
is equal to the arithmetic average of both extremes. A routine computes the mutation
probability per bit for each gene and stores the table of mutation probabilities per each gene.
The chromosome subjected to mutation is processed on a gene by gene basis. First a decision
is made, whether or not the given gene has to be mutated. If yes, then it is converted from
its normal, binary form into Gray code. A single, randomly selected bit is then inverted and
the result is transformed back into the usual form. Both transformations are fast in computer
realization and do not increase the computational burden noticeably.

What are the advantages of such a complicated procedure? It turns out that mutations
performed in this manner only rarely change the position of the chromosome in a search
space significantly. The larger the jump the less frequently it occurs. This behaviour can be
approximately described by the famous Zipf law [13]. Very small changes of location are the
most frequent, thus ensuring the balance between large scale and local searching. On the other
hand, the largest possible jump is nearly twice as large as that which could ever be achieved
by mutating the gene in its original form. Of course, after the mutation attempt, we can retain
the individual unchanged, with a single damaged gene, with two mutated genes, etc.

3.3.8. Termination criteria. The main loop of algorithm 1 is repeated until the median fitness
of phenotypes no longer improves. This is recognized as a lack of progress during the last 15
generations (average fitness fluctuates around some value or even worsens).

3.3.9. Remaining comments. The best genotype from the previous generation is always
saved, just in the unlucky event it were accidentally lost during the evolution process. If this
ever happens, we forcibly re-introduce the saved genotype into the population in place of its
worst member. We call this behaviour of the algorithm ‘kingdom mode’ in opposition to
‘democracy mode’, when the best individual is not protected. The best chromosome is always
returned as a final result of the entire procedure.

3.3.10. Details of calculations. The calculation is usually started with a preliminary run
using 4 as the expansion factor (section 2) and a large resolution λ (section 3.3.2). The
objective is to derive the true support of the distribution. In the subsequent run, the expansion
factor is adjusted to reliably cover the support of the distribution and the resolution is improved,
i.e. the value of λ is decreased.

During the evaluation, the GA is executed several times. Each time chromosome number 1
is set to the smoothed version of the best individual obtained so far, while other members of
the population are generated by the GA itself. The contents of each gene belonging to the
best individual, except for the first and last gene, which are set to zero, is set to the arithmetic
average of its two nearest neighbours. The number of bits assigned to each individual gene
may change at this stage too. It is possible to exploit the available experimental information,
expressed in bits, in such a way that it corresponded to the capacity of the histogram, also
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expressed in bits. To achieve this goal, we proceed as follows. The currently best phenotype (an
ordered sequence of real numbers wi) is converted back into its integer binary representation,
the genotype number 1. This conversion requires a certain real multiplier (‘quantum’), which
has to be adjusted so that the sum of true lengths of all resulting genes does not exceed the
experimental information. The true length of the ith gene is calculated as the integer part
of the expression max(1, �log2(wi/quantum)�), where �·� means the nearest integer not less
than the argument. This procedure is by no means accurate, since the input information can
be treated as a sum of contributions given by all experimental data, while this is not true for
the information contained in the genotype because of its smoothing. The length assigned to
each gene is increased by 2 before the next call to the GA routine. This trick allows for up to
fourfold increase of (some) amplitudes wi .

The results of a successful calculation cycle, i.e. when a new currently best genotype is
discovered, are stored. Due to smoothing the best individual before each new iteration, the
results cannot improve indefinitely. Three failures in a row (fitness worse than in the previous
cycle), or lack of improvement in 12 consecutive cycles terminate execution.

It is worth mentioning that the GA does not need the derivatives of the objective function
as the variants of the regularization methods do, and therefore it is easy to optimize with the
GA non-smoothed objective functions, like the one given in equation (9). We prefer to work
with absolute deviations rather than with their squares, because they are much less sensitive
to outliers.

4. Applications to model distributions

In order to compare the performance of each method, we have to note that in the case of the
regularization method, recovery of the unknown distribution curve relies on the optimization
of three different parameters (α, β, γ ) for each magnetization curve separately. For the
regularization method, the best fit was obtained when the interval [µmin, µmax] was divided
into 30–50 channels. The support of searched distribution cannot start from 0 but instead at
µmin > 0, in order to get the best possible fit. When using a higher resolution for the recovery
of the histogram, one obtains a noisy result, impossible to interpret from the experimental
point of view, although the obtained fit in some cases is better. We have to mention that
the regularization method often returns both negative and positive values for the unknown
amplitudes wi . In order to optimize the parameters α, β and γ we have to satisfy two
requirements at the same time, namely (i) to find the global minimum for the least-squares
deviation and (ii) the area contained in the bins with negative contents should be negligible
compared to the positive contents (only the non-negative values have physical sense). Finding
the proper choice of parameters requires several runs on the same experimental data and it
is not efficient from the point of view of the recovering process. Moreover, the resolution
obtainable by the regularization method is the worst among the methods treated in this paper.

For the SA method the cooling speed has to be adjusted. For a simple distribution the
convergence is fast, but for a more complex case, a slower cooling process has to be chosen,
increasing the calculation time. If the cooling process is too fast, the large-moment part of the
distribution cannot be recovered properly.

4.1. Single and double peak Dirac δ-like model distributions

As the first examples, we considered samples containing only one or two discrete sizes of
the magnetic moment, corresponding to single- and double-peak Dirac δ-like distributions.
The corresponding ‘experimental’ magnetization (Langevin) curves of 1000 points were
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Figure 1. Distributions recovered from a simulated magnetization curve originating from a sample
containing particles of equal moment by (a) regularization method, (b) simulated annealing and
(c) genetic algorithm. The model peak position is at 2.7 × 108.

constructed, to be recovered later by the different algorithms. All three methods succeeded in
recovering the initial distributions (results are shown in figures 1 and 2). None of the methods
is able to provide an infinitely narrow peak, instead distributions with finite width are obtained.

The most promising method in these trials was the genetic algorithm; the results
presented in the following were obtained using a thoroughly rewritten version of the earlier
program [11].

4.2. Lognormal and Gaussian model distributions processed by genetic algorithm

We have generated superparamagnetic magnetization curves by using either a lognormal
distribution or a Gaussian distribution of magnetic moments. In both cases, the number
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Figure 2. Recovered distributions from the magnetization curve of a sample containing a mixture
of two magnetic moments with (a) regularization method, (b) simulated annealing and (c) genetic
algorithm. Original peak positions were 3 × 107 and 1.8 × 108, with relative amplitudes of 1.0
and 0.3, respectively.

of points in the magnetization curve was 1000. The recovered distributions are shown in
figures 3 and 4, respectively.

For further testing of the GA program, we have combined the previous two distributions
in different proportions. The result of the computation is shown in figure 5.

Based on figures 3, 4 and 5, we can conclude that both the peak positions and half widths
could be surprisingly well reproduced by the GA. For the composite distribution (lognormal
plus Gaussian), the fit to the magnetization curve is shown in figure 6.
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Figure 3. Simulated lognormal-like distribution of particles with small magnetic moment (solid
line) used to generate a model magnetization curve and the distribution recovered by the genetic
algorithm (histogram).
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Figure 4. Simulated Gaussian-like distribution of particles with large magnetic moment (solid
line) used to generate a model magnetization curve and the distribution recovered by the genetic
algorithm (histogram).
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Figure 5. Simulated composite distribution, consisting of a lognormal and a Gaussian part (solid
line), used for the generation of a model magnetization curve and the distribution recovered by the
genetic algorithm (histogram).
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Figure 6. The simulated magnetization curve (diamonds), corresponding to the composite
distribution consisting of a lognormal and a Gaussian part (shown in figure 5) together with
the fit obtained by using the distribution recovered by the genetic algorithm (solid line).
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Figure 7. Generated magnetization curves with and without noise, assuming Gaussian distribution
for the magnetic moments. The noise amplitude represents 20% of the MS value.

The sensitivity of the recovered distribution to stochastic noise has also been studied.
We have constructed magnetization curves—assuming Gaussian distribution for the magnetic
moments—with the addition of a stochastic noise uniformly distributed in the [−Amp,Amp]
interval. The following numerical values have been considered for Amp: 0.1%, 0.2%,
0.5%, 1%, 2%, 5%, 10% and 20% of MS . The noisiest magnetization curve is presented in
figure 7.

In figure 8 the area of the two distributions, representing the saturation magnetization, is
almost the same, the difference being less than 1%. One can conclude that in spite of the fact
that the half width of the recovered peak is twice as large as the theoretical, the peak position
is properly given. In practice the noise coming from measurements is always smaller than that
in the extreme case (20% of MS) considered above. Up to 5% noise (which is reasonable from
an experimental point of view), both the peak position and the half width of the distribution
have been properly recovered by GA. We can conclude that if the noise is smaller than 5%
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Figure 8. The histogram represents the distribution recovered by the genetic algorithm from the
noisy magnetization data, which should be compared with the original Gaussian distribution (solid
line), from which the noiseless magnetization curve was created. For comparison, the inset shows
the distribution recovered from noiseless data (same as figure 4).

of MS , the GA is still able to recover the initial distribution, but measurements with larger
uncertainty are not suitable for the determination of the particle moment distribution.

Based on experience obtained during the recovery processes above, we conclude that
selecting 2 as the expansion factor of the maximum moment and λ = 20 as the smoothing
parameter allows for the recovery of a variety of model distributions with acceptable deviations.

This version of the GA combines the essential features of the two other methods described
in this paper, namely the concept of regularization and the stochastic nature of SA. The
advantages of GAs over other methods are that the recovered magnetic moment distributions
are strictly non-negative; they have only one adjustable parameter, λ (resolution), with clear
physical meaning, related to the signal to noise ratio of the experimental data.

All the presented calculations have been performed on two AMD ATHLON XP DUAL
CPU computers with the clock rate of 1.2 GHz for each CPU. The typical execution time
for a magnetization curve consisting of 1000 points, and using a 256-bin histogram for the
recovered distribution, was around 1 h.

5. Conclusions

Comparing the three methods studied in this paper, the genetic algorithm is by far the best
for extracting the magnetic moment distribution from the superparamagnetic magnetization
curves. The comparison has been done using artificially created distributions: single-modal
and multi-modal distributions with Gaussian and lognormal shapes. The genetic algorithm,
operating on discrete variables, is able to reproduce the smooth, multi-modal distributions,
recovering correctly and reliably all their essential features, such as peak positions and widths
at half maximum. Exact recovery of model distributions, however, cannot be expected,
because depending on the given smoothing parameter, some wiggles can appear distorting the
results. By proper selection of the expansion factor for the domain of the magnetic moment
distribution and by appropriate choice of the resolution, a variety of model distributions can
be reproduced with acceptable deviations. Consequently, the genetic algorithm method can
be recommended to process superparamagnetic magnetization curve data. Application for the
evaluation of experimentally measured magnetization curves of nanostructured systems is in
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progress. The executable files are available on the corresponding author’s Web page [14] and
the source code will be sent on request.
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